
1 - Introduction

Thanks for using the Quiver Workflow for LaunchBar 6. This action is a work in progress as I am
continually adding new features. If there is a feature you would like me to add, please let me
know at raguay@customct.com.

The main feature is the Template Expander using the Snippets notebook. With this, you can
create Handlebars based templates and paste them to your writing application.

To use this workflow, please follow the Installation instructions first.

https://www.obdev.at/products/launchbar/index.html
mailto:raguay@customct.com
http://handlebarsjs.com/
file:///Applications/Quiver.app/Contents/Resources/html-build/quiver-note-url/67A07EFE-F8D2-45D8-B095-D71EC98D0727

2 - Installation

The first step is to send the Quiver Library or the Snippet Notebook that is shared to this action.
This will setup the default variables and load the help file and Snippets notebooks. You are ready
to create and use snippets!

If you loaded the default Snippets, then you need to personalize them and fix the data in the
Defaults note to fit your needs.

If you have TextExpander and would like to pass your snippets through it, you need to also
install the Paste Through TextExpander action from the same source as the Quiver Snippets.

If you have Keyboard Maestro and would like to pass your snippets through it, you need to also
install Paste Throught KeyboardMaestro action from the same source as the Quiver
Snippets.

Once the Paste Through KeyboardMaestro action is loaded, you must run it without any text
passing to it for it to load the macro file. It will load a macro called Paste From Alfred. I use the
same macro with my Alfred workflow.

Currently, it only supports the cursor placement macro: %|

https://smilesoftware.com/textexpander
file:///Applications/Quiver.app/Contents/Resources/html-build/export.html

3 - The Default Snippet

The Default snippet isn't a snippet, but a json data structure that will be loaded into Handlebars for every
expansion. This "snippet" will never show up in the list of snippets for expansion. Therefore, you can define
globally used data that is inserted into your snippets.

Since you can cut/paste individual cells really easily, you can create a notebook of different data sets, and cut
and paste fragments from that notebook to the Defaults note. All code cells set to json will be pulled into the
expansion. Any other cell types will be ignored.

The expandPlain variable has a special meaning. If this variable is set to true, then the snippet will be pasted
normally. Otherwise, either TextExpander or Keyboard Maestro will be used to further expand the snippet and
place it in the top most application. If the variable expander is set to 1, then TextExpander is used. If the
variable expander is set to 2, then Keyboard Maestro will be used. If these variables are set in the Defaults
section, then that will be the default expansion style. This can also be set in each snippet to over-ride the
Defaults setting.

JSON structure can be split up among many cells. They will be imported and added to the main structure. Any
data redefined by a cell lower than the cell originally defined in will over-write the original definition in the final
data structure.

Any code cells with a json data structure in a snippet will also be added to the main data structure and will
override whatever is loaded from the Defaults data structure.

If you have a JavaScript cell in the Defaults notebook, it will be loaded as an extension. You have to format
as:

You add the Handlebar helper functions by calling Handlebars.registerHelper() with the name of the helper
and a function to perform the action. Please refer to the Handlebars Website for more information.

function myHandlebar(Handlebars,moment) {
 // Your extension code.
}
myHandlebar

1
2
3
4

https://smilesoftware.com/textexpander
http://www.keyboardmaestro.com/main/
http://handlebarsjs.com/

4 - Creating Snippets

To create a snippet, go to the Snippet notebook and create a note. All cells that are designated as code and
handlebars will be combined together to make the template. All cells that are designated as code and json will
be combined with the Defaults data to make the database that Handlebars will use to fill in the macro
expansions.

All other cell types are ignored. But, you can use them to add notes, explanations, or diagrams for the data and
templates.

If you create a snippet with a data structure containing the keyword versions, then that snippet will be
expanded and the variations sent to the user to pick. An example would be as follows:

This is the template:

This is the JSON data structure for doing versions:

The name in each version will be shown to the user for picking the version to insert. Therefore, the name
variable has to be set for each version. All the versions variables are used to expand the snippet. For example,
if the user chooses the "First Email", then the phrase "My email: first@email.com" will be inserted.

My email: {{email}}

{
 "versions": [
 {
 "name": "First Email",
 "email": "first@email.com"
 },
 {
 "name": "Second Email",
 "email": "second@email.com"
 },
 {
 "name": "Third Email",
 "email": "third@email.com"
 }
]
}

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

5 - Handerbar Constants and Helpers

Helper Functions

The four helper functions I defined are: save, clipboard, cdate, and date. All normal Handlebars helper
functions are usable as well. This is not a complete guide to using Handlebars.

All Handlebars macros can be rapped in {{ }} for HTML escaping of characters, or {{{ }}} for raw outputing.

The save helper takes two parameters in quotation marks: the name and the value. A new helper is then
created with the name that will produce the value. The helper also returns the value to be placed in it's place.
From that point on, all macros that use the name will be replaced with the value.

The clipboard helper will be replaced with the current contents of the clipboard.

The date helper will be replaced with the current date formated by the Moment.js formatting variables given as
the argument.

The cdate helper will be replaced with the date/time specifed by the first argument and the Moment.js
formatting as the second argument. The date/time format has to follow 2013-02-08 24:00:00.000 format.

The next helper will be replaced with the date/time relative to the current date/time. It takes three arguments:
weeks, dow, fmat. The weeks is the relative number of weeks. Therefore, this week is 0, next week is 1, in two
weeks is 2, last week is -1. The dow is the day of the week of that week. Therefore, weeks set to 1 and dow
set to "Sat" will give the Saturday of next week. The fmt is the formatting for the date/time as specified in the
Moment.js documentation.

An example is:

{{next -1 "Mon" "YYYY-MM-DD"}} will give the monday of last week in Year-Month Number-two digit day.
Example straight from the clipboard is: 2016-03-28 and the day I wrote this is 04/08/2016.

Predefined Macros

The following are the predefined macros for Handlebars:

Macro Moment Format

cDateMDY MMMM DD, YYYY

cDateDMY DD MMMM YYYY

http://handlebarsjs.com/
http://momentjs.com/docs/#/parsing/string-format/
http://momentjs.com/docs/

cDateDOWDMY dddd, DD MMMM YYYY

cDateDOWMDY dddd MMMM DD, YYYY

cDay DD

cMonth MMMM

cYear YYYY

cMonthShort MMM

cYearShort YY

cDOW dddd

cMDthYShort MMM Do YY

cMDthY MMMM Do YYYY

cHMSampm h:mm:ss a

cHMampm h:mm a

cHMS24 H:mm:ss

cHM24 H:mm

Note: The "Macro Test" snippet in the default snippets notebook gives an example of many of these macros. I
used it to test the special macros, but you can see how they are used for your own snippets.

6 - Expanding the Snippets

To expand a snippet, type "qs" in Launchbar and select the Quiver Snippet Action. A list of snippet titles will
be displayed. Select the snippet you want and it will be pasted in to your topmost application.

If you want to use a different abbreviation, then simply change the default abbreviation in the Script Editor or
train LaunchBar to use a different one.

